171 research outputs found

    A Farey Fraction Spin Chain

    Full text link
    We introduce a new number-theoretic spin chain and explore its thermodynamics and connections with number theory. The energy of each spin configuration is defined in a translation-invariant manner in terms of the Farey fractions, and is also expressed using Pauli matrices. We prove that the free energy exists and exhibits a unique phase transition at inverse temperature beta = 2. The free energy is the same as that of a related, non translation-invariant number-theoretic spin chain. Using a number-theoretic argument, the low-temperature (beta > 3) state is shown to be completely magnetized for long chains. The number of states of energy E = log(n) summed over chain length is expressed in terms of a restricted divisor problem. We conjecture that its asymptotic form is (n log n), consistent with the phase transition at beta = 2, and suggesting a possible connection with the Riemann zeta function. The spin interaction coefficients include all even many-body terms and are translation invariant. Computer results indicate that all the interaction coefficients, except the constant term, are ferromagnetic.Comment: 15 pages + 5 figures, postscript. Contact: [email protected]

    General solution of an exact correlation function factorization in conformal field theory

    Full text link
    We discuss a correlation function factorization, which relates a three-point function to the square root of three two-point functions. This factorization is known to hold for certain scaling operators at the two-dimensional percolation point and in a few other cases. The correlation functions are evaluated in the upper half-plane (or any conformally equivalent region) with operators at two arbitrary points on the real axis, and a third arbitrary point on either the real axis or in the interior. This type of result is of interest because it is both exact and universal, relates higher-order correlation functions to lower-order ones, and has a simple interpretation in terms of cluster or loop probabilities in several statistical models. This motivated us to use the techniques of conformal field theory to determine the general conditions for its validity. Here, we discover a correlation function which factorizes in this way for any central charge c, generalizing previous results. In particular, the factorization holds for either FK (Fortuin-Kasteleyn) or spin clusters in the Q-state Potts models; it also applies to either the dense or dilute phases of the O(n) loop models. Further, only one other non-trivial set of highest-weight operators (in an irreducible Verma module) factorizes in this way. In this case the operators have negative dimension (for c < 1) and do not seem to have a physical realization.Comment: 7 pages, 1 figure, v2 minor revision

    Exact results at the 2-D percolation point

    Full text link
    We derive exact expressions for the excess number of clusters b and the excess cumulants b_n of a related quantity at the 2-D percolation point. High-accuracy computer simulations are in accord with our predictions. b is a finite-size correction to the Temperley-Lieb or Baxter-Temperley-Ashley formula for the number of clusters per site n_c in the infinite system limit; the bn correct bulk cumulants. b and b_n are universal, and thus depend only on the system's shape. Higher-order corrections show no apparent dependence on fractional powers of the system size.Comment: 12 pages, 2 figures, LaTeX, submitted to Physical Review Letter

    Chronobiological peculiarities of psychic disorders course at the example of metabolic syndrome patients

    Get PDF
    Desynchronosis presenting in patients with metabolic syndrome significantly affects the underlying metabolism, eating behavior, mental and physical activity. On on example of a clinical case, patients with a depressive episode of moderate severity and  clinically confirmed metabolic syndrome on the treatment achieved a significant improvement on their mental status and reduced manifestations on metabolic disorders. The study on chronobiological features on the course on mental disorders on combination with metabolic syndrome is a promising direction on medical practice, which will improve the results on treatment on patients with a similar pathology

    Cluster Approximation for the Farey Fraction Spin Chain

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Utilising ideas from dynamical systems, the free energy of the model is derived by means of an effective cluster energy approximation. This approximation is valid for divergent cluster sizes, and hence appropriate for the discussion of the magnetizing transition. We calculate the phase boundaries and the scaling of the free energy. At h=0h=0 we reproduce the rigorously known asymptotic temperature dependence of the free energy. For h0h \ne 0, our results are largely consistent with those found previously using mean field theory and renormalization group arguments.Comment: 17 pages, 3 figure

    Wave Mechanics of Two Hard Core Quantum Particles in 1-D Box

    Full text link
    The wave mechanics of two impenetrable hard core particles in 1-D box is analyzed. Each particle in the box behaves like an independent entity represented by a {\it macro-orbital} (a kind of pair waveform). While the expectation value of their interaction, ,vanishesforeverystateoftwoparticles,theexpectationvalueoftheirrelativeseparation,, vanishes for every state of two particles, the expectation value of their relative separation, , satisfies λ/2 \ge \lambda/2 (or qπ/dq \ge \pi/d, with 2d=L2d = L being the size of the box). The particles in their ground state define a close-packed arrangement of their wave packets (with =λ/2 = \lambda/2, phase position separation Δϕ=2π\Delta\phi = 2\pi and momentum qo=π/d|q_o| = \pi/d) and experience a mutual repulsive force ({\it zero point repulsion}) fo=h2/2md3f_o = h^2/2md^3 which also tries to expand the box. While the relative dynamics of two particles in their excited states represents usual collisional motion, the same in their ground state becomes collisionless. These results have great significance in determining the correct microscopic understanding of widely different many body systems.Comment: 12 pages, no figur

    Exact results for the Barabasi model of human dynamics

    Full text link
    Human activity patterns display a bursty dynamics, with interevent times following a heavy tailed distribution. This behavior has been recently shown to be rooted in the fact that humans assign their active tasks different priorities, a process that can be modeled as a priority queueing system [A.-L. Barabasi, Nature 435, 207 (2005)]. In this work we obtain exact results for the Barabasi model with two tasks, calculating the priority and waiting time distribution of active tasks. We demonstrate that the model has a singular behavior in the extremal dynamics limit, when the highest priority task is selected first. We find that independently of the selection protocol, the average waiting time is smaller or equal to the number of active tasks, and discuss the asymptotic behavior of the waiting time distribution. These results have important implications for understanding complex systems with extremal dynamics.Comment: 4 pages, 4 figures, revte

    Conformal Field Theory and Hyperbolic Geometry

    Full text link
    We examine the correspondence between the conformal field theory of boundary operators and two-dimensional hyperbolic geometry. By consideration of domain boundaries in two-dimensional critical systems, and the invariance of the hyperbolic length, we motivate a reformulation of the basic equation of conformal covariance. The scale factors gain a new, physical interpretation. We exhibit a fully factored form for the three-point function. A doubly-infinite discrete series of central charges with limit c=-2 is discovered. A correspondence between the anomalous dimension and the angle of certain hyperbolic figures emerges. Note: email after 12/19: [email protected]: 7 pages (PlainTeX

    Percolation Crossing Formulas and Conformal Field Theory

    Full text link
    Using conformal field theory, we derive several new crossing formulas at the two-dimensional percolation point. High-precision simulation confirms these results. Integrating them gives a unified derivation of Cardy's formula for the horizontal crossing probability Πh(r)\Pi_h(r), Watts' formula for the horizontal-vertical crossing probability Πhv(r)\Pi_{hv}(r), and Cardy's formula for the expected number of clusters crossing horizontally Nh(r)\mathcal{N}_h(r). The main step in our approach implies the identification of the derivative of one primary operator with another. We present operator identities that support this idea and suggest the presence of additional symmetry in c=0c=0 conformal field theories.Comment: 12 pages, 5 figures. Numerics improved; minor correction

    Polarizing Bubble Collisions

    Full text link
    We predict the polarization of cosmic microwave background (CMB) photons that results from a cosmic bubble collision. The polarization is purely E-mode, symmetric around the axis pointing towards the collision bubble, and has several salient features in its radial dependence that can help distinguish it from a more conventional explanation for unusually cold or hot features in the CMB sky. The anomalous "cold spot" detected by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite is a candidate for a feature produced by such a collision, and the Planck satellite and other proposed surveys will measure the polarization on it in the near future. The detection of such a collision would provide compelling evidence for the string theory landscape.Comment: Published version. 15 pages, 8 figure
    corecore